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ABSTRACT  

Protein N-myristoylation is the covalent attachment of myrstate, via an amide bond, to the N-terminal 
glycine residue of a nascent polypeptide assisted by myristol-CoA protein: N-myristoltransferases 
(NMT). PROSITE motif describes 5 amino acid after glycine site that would give rise to myristoylation 
site. However, applied to whole database extract, this motif give too many false postive results. 
Therefore 2 new tools were developed for N-myristoylation prediction.Taking physical properties into 
consideration inceases prediction scores greatly. However, these algorithms still cannot predict 
myristoylated site correctly 100% of the time due to limited understanding of the real mechanims 
underlying N-myristoylation 
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INTRODUCTION 

Protein N-myristoylation is the covalent 
attachment of myrstate, via an amide bond, to 
the N-terminal glycine residue of a nascent 
polypeptide assisted by myristol-CoA protein: 
N-myristoltransferases (NMT) (Johnson, 
Bhatnagar, Knoll, & Gordon, 1994). This 
modification has only been observed in 
eukaryotes and appears to be irreversible.  

 
Figure 1. Myristate addition to N-terminal glycine 

 
The first N-myrostoylated proteins were 

found in 1982 by Koiti Titatni et. al (Carr, 
Biemann, Shoji, Parmelee, & Titani, 1982) . 
Since then, many cellular N-myristolproteins 
have been identified. These proteins have 
diverse functions. Some examples include 
tyrosine kinases, serine/threonine kinases, 
phospoprotein phosphates, and kinase 
substrates. Other types of proteins involved in 
signal transduction cascades, and protein 
mediators and vesicular transport. 

N-myrstolproteins have diverse intracellular 
destinations. Myristate is critical for protein-
protein mediation and protein-membrane 
interactions for some N-myrostoylproteins. 

The first N-myristoylation pattern was first 
described by PROSITE database of protein 
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domains. The pattern (PDOC00008) defines the 
amino acid sequence of five positions after the 
glycine site that would give rise to 
myristoylation (Towler, Gordon, Adams, & 
Glaser, 1988). The patterns are described 
below: 

 The N-terminal residue must be glycine. 

 In position 2, uncharged residues are 
allowed. Charged residues, proline and 
large hydrophobic residues are not 
allowed. 

 In positions 3 and 4, most, if not all, 
residues are allowed. 

 In position 5, small uncharged residues are 
allowed (Ala, Ser, Thr, Cys, Asn and Gly). 
Serine is favored. 

 In position 6, proline is not allowed. 

However, these pattern gives too many false 
positives when applied to whole database 
searching. Therefore, two tools were developed 
to reliably predict N-myristoylation in silico; the 
two tools are: NMT predictor* and 
Myristoylator** 
 
* Available on: 
http://mendel.imp.ac.at/myristate/SUPLpredict
or.htm 
** Available on: 
https://web.expasy.org/myristoylator/ 
 
NMT Predictor 

NMT predictor were developed by Maurer-
Stroh et. al in 2002. They tried to predict N-
myristoylation site based on the amino acid 
sequence (Maurer-Stroh, Eisenhaber, & 
Eisenhaber, 2002a). The system was based on 
390 myristoylated proteins divided into three 
group: (1) 234 proteins were supposed to be 
myristoylated by similarity; (2) 56 proteins were 
potential candidate for myristoylation; (3) 100 
proteins that were proven to be myristoylated. 

They have refined the sequence motif for N-
terminal N-myristoylation. Based on the in-
depth study of amino acid sequence variability 
of substrates proteins, binding site analysis in X-

ray structures analysis or 3D homology models 
for NMTs from various species, and biochemical 
data extracted from scientific literatures, they 
found an indication that, within a complete 
substrate protein, the first 17 N-terminal 
proteins residues experience different types of 
variability restrictions.  

They manage to identify three motif regions: 
region 1 (index 1-6) fitting the binding pocket, 
region 2 (index 7-10) interacting with the NMT’s 
surface at the mouth of the catalytic activity, 
and region 3 (positions 11-17) containing a 
hydrophilic linker. Each region was 
characterized by physical requirements to single 
sequence positions or groups of positions in 
regard to polarity, backbone flexibility, volume, 
and other physical properties associated with 
amino acids (Maurer-Stroh, Eisenhaber, & 
Eisenhaber, 2002b). 

From these information, they created a 
predictor that relies on a scoring system based 
on sensitive profile extraction, physical 
properties requirements, and compensatory 
effects among sequence positions as well as its 
validation. They follow the strategy that has 
been successfully applied for GPI-lipid anchors 
prediction (Eisenhaber, Bork, & Eisenhaber, 
1998). The method is also assisted with false 
postives probability prediction; therefore, the 
tool facilitates large-scale database searching.  
 
NMT Predictor Algorithm 

From their previous analysis of substrate 
protein sequence variability, NMT sequences 
and their structures has revealed that the N-
terminal 17 residues are characterized by amino 
acid type variability restriction and match a 
pattern of physical properties of amino acid 
side-chains. If compared with the motifs 
described PROSITE, the increased motif length 
together with physical properties consideration, 
including compensatory effects and multi-
residue correlations, promises better 
discrimination between substrate proteins and 
non-myristoylated proteins.  
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Based on GPI-lipid anchor experiments, both 
amino acid type preferences and physical 
pattern of amino acid side chains can be 
implemented into a score function to determine 
how likely a protein can undergo N-
myristoylation.  

Heavy or moderate disagreement with many 
physical property pattern aspects or high 
deviation in one feature is sufficient to exclude 
many non-myristoylated proteins as possible 
post-translational modification target. 
Following the establised logic, a composite 
score function S was created: 

S = Sprofile + Sppt 

The weighted motif region based on protein 
profile Sprofile evaluates each amino from 
position 1 to 17 type preferences. It is 
calculated with the PSIC algorithm, a profiling 
technique that is applicable for sequence sets 
with redundant subsets which is the case for 
NMT substrate learning set; Sprofile scores can be 
either positive or negative (Eisenhabera, Borka, 
Yuanc, Löfflerb, & Eisenhaberb, 2000).  

The second parameter, Sppt, in essence is the 
sum of about a dozen of terms. Each of them is 
penalizing the deviation from the preffered 
physical pattern properties in the NMT motif. 
All physical property term results have negative 
scores based on the definition. Typically, a 
conserved physical properties such as polarity is 
assumed to follow a Gauss-like (normal 
distribution) among true substrates The 
parameters for this distribution were computed 
from the learning set. Physical properties 
differences from the corresponding learning set 
average can be converted into scores by 
Gaussian functions. Therefore, if non-
conformity with the physical-chemical 
requirements is higher, the penalty score will be 
much higher. 

The construction of the total score allows 
the model to interpret the prediction output 
physically, such as filtering negative terms that 
are responsible for potential substrate 
rejection. Protein queries with higher score 

should be more favored as substrate 
candidates. 

However, this approach oversimplified the 
incompletely understood recognition process 
and cannot always reflect the naturally occuring 
different affinites to the enzyme relative to 
prediction function scores.  

For the reason above, parameterization of 
the prediction function withouth the application 
of automated numerical optimization 
techniques to avoid overfitting to the data in 
learning set. The thresholds for NMT predictor 
were set close to the lowest score of 
experimentally verfied myristoylated protein. 
The reliable S score is S with the score of zero or 
above and twilight zone predictions (0 > S ≥ -2). 

The next step is the evaluation of false 
positve results which will be shown later in the 
“comparison result” section. In the real 
sequence, the correct motif can occur 
incidentally with a certain probabilty. For this to 
happen, there are two reasons: (1) the protein 
is a good NMT substrate candidate but, due to 
biological context, it can never be in contact 
with the enzyme; (2) the scoring function 
describes the motif incompletely and may 
produce false postive result. NMT predictor 
algorithm was implemented in C programming 
language.  

  To justify and vaildate their function, 
the authors performed several tests, but they 
also compare their results with experimental 
data. The tests were: (1) self-consistency test; 
(2) jack-knife test of whole score S; (3) jack-
knife test of Sppt; (4) scores for proteins that 
were known to have never give rise to 
myristoylation (5) Correlation analysis with 
experimental data on NMT binding kinetics of 
model substrates. 

 
Myristoylator 

2 years after the release of NMT predictor, 
Swiss-Prot group release a new N-
myristoylation site predictor, Myristoylator. The 
models behind their system were different from 
that of NMT predictor. Their models used 



Indonesian Journal of Life Sciences   Vol. 01 | Number 01 | March (2019) 

http://sso.i3l.ac.id/ojs/index.php/IJLS/index 

 

9 
 

several distinctive features: (1) the use of 
several neural networks and their combination 
(NNS); (2) The use of qualitative properties in 
the inputs; the use of both positive and 
negative sequences; (4) score definition that is 
closely related to probabilities; (5) an average 
speed at least 9 times faster (Bologna, Yvon, 
Duvaud, & Veuthey, 2004). 

 
Myristoylator Algorithm 

For the dataset, the authors searched for 
proteins containing N-terminal glycine in Swiss-
Prot. They obtained 327 proteins that were 
proven experimentally to have never given rise 
to myristoylation. The new data set was created 
by combining Maurer-Stroh et. al’s positive 
dataset with negative set. In total, they 
obtained 717 proteins. 16 amino acids after 
glycine are the determinant for N-
myristoylation for this model.  

Machine learning models, artifical neural 
networks (NNs) and decision trees (DTs) for 
example, are able to discriminate concepts, by 
viewing examples repetitively. For the 
experiment, the usage NNs and DTs were 
compared to determine which model is the best 
for prediction.  

In general, DTs are built by a recursive 
function splitting the input spaces by axis-
parallel hyperplanes. At each step of the 
algorithm, a criterion to determine the best 
split is used, also known as “Divide and 
Conquer” approach. The most popular DT 
models is C4.5 (Quinlan, 1993). 

During the training phase, the strategy of 
NNs and DTs are different. DT might miss 
combinations of several variables which are 
weakly predictive separately, but become 
strong predictive if combined. On the other 
hand, NN might fail to differentiate a strongly 
relevant variables among several irrelevant 
ones.   

The discretized interpretable multilayer 
perceptron (DIMLP) network is a special 
multilayer perceptron for which symbolic rules 
are generated to explain the information 

embedded within the connections and the 
activation of neurons (Haykin, 1994). 

Moreover, the computational complexity of 
the rule extraction algorithm scales in 
polynomial time with the dimensionality of the 
problem, the number of training examples, and 
the size of the network. 

In the DIMLP model there are an input layer, 
one or more hidden layers (also known as 
intermediate layers), and an output layer. Fig. 2 
illustrates a DIMLP network with two hidden 
layers. The activation functions of the neurons 
are the “staircase” (first intermediate layer) and 
the sigmoid function (second intermediate layer 
and output layer). Bias units represented in the 
left side are special neurons with constant 
activity; they are useful for several technical 
reasons. The adaptable parameters of the 
model are the weights denoted by symbol w, 
while symbols x and h represent input vectors 
and activations of intermediate neurons, 
respectively. Learning is achieved by 
determining the values of the weights which 
classify the training examples in the correct 
classes. Weights are adapted based by an 
optimization algorithm based on the back-
propagation gradient. 

 
Figure2. DIMLP network with an input layer, two 
intermediate layers, and an output layer. The 
activations of the neurons are given by the first 
intermediate layer and the sigmoid function (second 
intermediate layer and output layer). Bias units 
represented in the left are special neurons with 
constant activity. The adaptable parameters of the 
model are the weights denoted by symbol w. 
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It was demonstrated that under several 
hypothesis, the output neurons of the 
perceptron converge towards the probability of 
the class given the observation (Haykin, 1994). 
Therefore, in this model S is defined as a score 
that is related to probabilities as described 
below. 

S = Opos +OSneg 

Opos and Oneg are the output neurons that 
describe the prensence of N-myristoylated 
proteins and non-myristoylated proteins, 
respectively. Since Opos and Oneg are probabilites, 
they reflect a measure of confident in the range 
of (-1 to +1). A score closer to +1 indicates high 
confidence of myristoylation. On the other 
hand, a score closer -1 indicates the absence of 
myristoylation. Finally, a score between 0 and 
0.5 for both positive and negative score is the 
twilight zone where no decision can be made. 
Below are some of the rules that were applied 
to DIMLP. Not all of the rules were published. 

Rule 1. IF (P2  = NOT LARGE) AND (P5 = S) THEN 
NMT 
Rule 2.  IF (P5 = S) AND (P6 = POSITIVE) THEN 
NMT 
Rule 3.  IF (P2 = A) AND (P5 = NEUTRAL) AND (P5 = 
NOT LARGE THEN NMT 
Rule 4.  IF (P5 = S) AND (P13 = NEGATIVE) THEN 
NMT 
Rule 5.  IF (P2 = NEUTRAL) AND (P4 = LARGE) AND 
(P5 = TINY) AND (P6 = POSITIVE) THEN NMT 
Rule 6.  IF (P2 = N) AND (P5 = TINY) THEN NMT 
Rule 7.  IF (P2 = N) AND (P7 = HYDROPHPOBIC) 
AND (P17 = NOT ALIPHATIC) THEN NMT 
Rule 8.  IF (P5 = T) AND (P17 = NOT HYDROPHOB- 
IC) THEN NMT 

Neural networks input vectors of amino 
acids were encoded by “sparse coding”. Each 
amino acid was transformed into a vector of 20 
input neurons with a particular “1” at a position 
and “0” at the others. Because 16 amino acids 
after glycine were considered, a total of 320 (16 
x 20) input neurons were obtained. The second 

input series, the authors added the properties 
of each amino acid. Since there are 20 binary 
possibilites for each 16 amino acid, another 
vector of 320 inputs were obtained.  

 

 

Figure3. The first series define the amino acid 
sequence. Each amino acid has their own sparse 
coding. On the other hand, the second series define 
the physical properties of each amino acid, e.g 
polarity, hydrophobicity, size, etc. There are 640 
unique inputs 

DTs also used the same input series. The 
authors define two inputs to both DT and 
DIMLP. The first is prediction only based on 
amino acid sequence (aa), whereas the second 
input are both the amino acid sequence and 
physical properties of each amino acid (aa + 
prop). Finally, all the models were trained with 
default learning parameter(Quinlan, 1993). 
Comparison between PROSITE motif, NMT 
Predictor, and Myristoylator 

Comparison study was performed by Swiss-
Prot group to compare their model, for both 
DTs and DIMLP,  with PROSITE motif and NMT 
predictor. A total of 717 proteins samples were 
used, more specifically 390 positive protein 
samples and 327 negative protein samples. 
Summary table was provided below. 

Table 1. Summary table of comparison study  
SENS: sensitivity; SPEC: specificity; aa: amino acid; prop: 
physical properties; Truepos: true positive  

 SENS  
% 

SPEC 
% 

C1 
% 

C2 
% 

DIMLP- (aa) 86.7 95.4 86.6 81.7 
C4.5 (aa) 89.7 94.8 84.1 83.8 
DIMLP (aa + 
prop) 

93.8 97.9 91.4 91.2 

C4.5 (aa + prop.) 82.6 92.4 80.0 74.6 
DIMLP (aa + prop 
+ Truepos) 

77.0 97.9 84.4 79.6 
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PROSITE 93.6 77.7 - 72.7 
NMT predictor 95.9 97.2 - 92.9 

 

Sensitivity is the number of true positives. 
Specificity is the number of true negativs. C1 
and C2 are Mathews correlation with binary 
and non-binary response, respectively. Bolded 
value shows the highest percentage relative to 
others. 

For sensitivity (true positives), NMT 
predictor developed by Maurer-Stroh et. al 
performed the best with the value of 95.9 %. 
For specificity, both DIMLP (aa + prop) and 
DIMLP (aa + prop + Truepos) performed the 
best with the value 0f 97.9 %. Matthew 
correlation coefficient is used in machine 
learning as a measure of the binary 
classifications quality; the higher the score the 
better (Matthews, 1975). The highest scores for 
both C1 and C2 are shown in DIMLP (aa + prop) 
with the score of 91.4 % and 91.2 %, 
respectively. 

Based on the result, taking amino acid 
physical properties into consideration increases 
both sensitivty and specificity greatly. 
Interestingly, DIMLP (aa + prop + Truepos) 
shows the poorest sensitivity even lower than 
PROSITE motif. For sensitivty, PROSITE motif 
and DIMLP (aa + prop) shows very similar result 
with 93.8 and 93.6, respectively. For specificity, 
NMT predictor also shows similar with DIMLP 
(aa + prop) with value of 97.9 and 972. 
respectively.  

Aside from this, the authors of Myristoylator 
also perfomed speed test online to compare 
myristoylator and NMT predictor. 10 randomly 
selected different protein sequences were used 
for this experiment. 

Table 2. Time for predictor to run 

Protein 
acc. No. 

Protein ID 
NMT 

Pred (s) 
Myristoylator 

(s) 

P49702 ARF5_CHICK 29 3 
Q07085 EST2_CAEEL 29 3 
Q00743 GBA1_EMENI 29 3 
P19627 GBAZ_RAT 28 3 

P08239 GB01_BOVIN 28 3 
P26201 CD36_BOVIN 28 3 
P00015 CYC2_MOUSE 28 3 
P02097 HBG_MACNE 28 3 
P16050 LOX1_HUMAN 28 2 
P39080 PGQ_XENLA 28 3 

The top 5 proteins are proteins that were 
positively tested for myristoylation, whereas 
the bottom 5 were proteins that have never 
been known to give rise to N-myristoylation. It 
turns out, Myristoylator is 9 times faster 
relative to NMT predictor. 

Limitation for Both Models 

The best way to determine whether a 
protein can be myristoylated is through 
experimental methods. However, wet-lab 
methods are expensive and very time 
consuming. Therefore, in silico prediction is 
highly prefered.  

The two models consider not only amino 
acid sequence but also the physical properties. 
But even then, these models still cannot predict 
N-myrsitoylation site correctly all the time. This 
is because the whole algorithm is 
oversimplifying the natural condition for N-
myristoylation to occur. several conditions for 
N-myristoylation might also still be unknown to 
us.  

Lastly, the two models can only predict 
myristoylation that happen on N-terminal 
glycine. Although it is rare, myristoylation can 
happen in the middle of a protein sequence. 
They cannot detect myristoylation that happens 
in the middle of the sequence because they 
only consider the first 16 amino acid after 
glycine 

According to Table 1, the result of the real 
data is similar with the simulated data, meaning 
that the allelic dropout event is well-estimated 
under the model. The model also successfully 
corrected the bias in heterozygosity estimation 
with very low standard deviation. However, it 
must be taken into account that the model is 
constructed based on the Native American 
dataset (i.e. the simulated data is the same with 
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the real data); its performance might be altered 
when the heterozygosity mechanism of our 
dataset is different with the Native Amrican 
one. 
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